Bexim, CC BY-SA 4.0 , via Wikimedia Commons

Powerfuels

The challenge

The use of Powerfuels in combustion systems and fuel cells has many outstanding challenges. Our research is addressing these challenges in order to facilitate the production and utilization of Powerfuels. We will develop novel, efficient and cost-effective technologies for the synthesis of hydrogen (H2) and ammonia (NH3) while enhancing carbon sequestration from point sources and direct air capture. Our research will resolve fundamental issues to facilitate and speed-up the implementation of green fuels in combustion systems and develop efficient, durable and stable fuel-cell technologies to span a wide a range of applications from household power to transport.

 

Why this research is valuable

Green hydrogen is emerging as an industry worth up to $5 billion, and demand is estimated to increase from about 90 million tonnes in 2020 to 660 million tonnes in 2050. The target cost for green hydrogen to be viable as an export commodity is $2/kg-delivered to the user while the current cost is almost three times higher. Our research will develop the framework to facilitate the cost-effective production and utilisation of green fuels, including green hydrogen.

 

Powerfuels - Research themes

Production of Powerfuels:

  • Plasma driven electrochemical synthesis of ammonia and green fuels
  • Converting organic waste resources to Biofuels and Chemicals
  • Converting CO2 to chemicals including green methane, methanol formaldehyde and associated advanced catalysis
  • Alternative electrolysers architectures
  • Developing advanced catalysts for water electrolysis and fuel cells
  • Process Systems Engineering: Systems modelling and optimisation, process design and integration, modelling power fuels eco-industrial precincts, energy from waste, and waste heat recovery
  • Efficient transition of metal/carbon water splitting electrocatalysts for hydrogen production
  • Development of porous electromaterials for Hydrogen Production and Energy Storage, and Low-cost, robust, high-activity water splitting electrodes
  • Sustainable production of hydrogen and fuels from solid wastes, biomass, and greenhouse gas via catalytic transformation
  • Low-pressure NH3┬ásynthesis using new catalysts to enhance the energy efficiency and to promote the green production of ammonia
  • Plasmonic Green H2: the green hydrogen revolution.

Storage of Powerfuels:

  • Developing advanced materials to store hydrogen and ammonia safely
  • Developing and deploying new solar thermal-driven (renewable process heat) industrial processes (heat battery, Solar reactor, concentrated solar thermal processes)
  • Carbon capture and utilisation (CCU) and integration with carbon market and policy: developing low emissions technology for capturing carbon emissions to produce value-added products such as fuels and chemicals

Effective utilization of Powerfuels:

  • Investigating turbulent combustion of H2-NH3-Hydrocarbon mixtures: exploring the effects of differential diffusion and compositional inhomogeneity
  • Investigating atomization characteristics and turbulent combustion of ammonia sprays
  • Conducting computations of preferential diffusion, instabilities, and finite-rate chemistry in turbulent flames of H2-NH3 mixtures
  • Improving safety of H2 utilization through experiments and modelling of fuel leak dispersion and explosions
  • Improving fuel cell efficiency and applications
  • Designing novel fuel cell architectures for high power density.

 

Want to know more?

Further details may be obtained by contacting the research leader directly or accessing the web site listed below:

Advanced Carbon Research Lab

Production of Powerfuels at scale – Net-Zero Conference